Streaming Label Learning for Modeling Labels on the Fly
نویسندگان
چکیده
It is challenging to handle a large volume of labels in multi-label learning. However, existing approaches explicitly or implicitly assume that all the labels in the learning process are given, which could be easily violated in changing environments. In this paper, we define and study streaming label learning (SLL), i.e.labels are arrived on the fly, to model newly arrived labels with the help of the knowledge learned from past labels. The core of SLL is to explore and exploit the relationships between new labels and past labels and then inherit the relationship into hypotheses of labels to boost the performance of new classifiers. In specific, we use the label self-representation to model the label relationship, and SLL will be divided into two steps: a regression problem and a empirical risk minimization (ERM) problem. Both problems are simple and can be efficiently solved. We further show that SLL can generate a tighter generalization error bound for new labels than the general ERM framework with trace norm or Frobenius norm regularization. Finally, we implement extensive experiments on various benchmark datasets to validate the new setting. And results show that SLL can effectively handle the constantly emerging new labels and provides excellent classification performance.
منابع مشابه
Exploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملA novel online multi-label classifier for high-speed streaming data applications
In this paper, a high-speed online neural network classifier based on extreme learning machines for multi-label classification is proposed. In multi-label classification, each of the input data sample belongs to one or more than one of the target labels. The traditional binary and multi-class classification where each sample belongs to only one target class forms the subset of multi-label class...
متن کاملA Novel Intrusion Detection Systems based on Genetic Algorithms-suggested Features by the Means of Different Permutations of Labels’ Orders
Intrusion detection systems (IDS) by exploiting Machine learning techniques are able to diagnose attack traffics behaviors. Because of relatively large numbers of features in IDS standard benchmark dataset, like KDD CUP 99 and NSL_KDD, features selection methods play an important role. Optimization algorithms like Genetic algorithms (GA) are capable of finding near-optimum combination of the fe...
متن کاملLarge Scale Distributed Semi-Supervised Learning Using Streaming Approximation
Traditional graph-based semi-supervised learning (SSL) approaches, even though widely applied, are not suited for massive data and large label scenarios since they scale linearly with the number of edges |E| and distinct labels m. To deal with the large label size problem, recent works propose sketch-based methods to approximate the distribution on labels per node thereby achieving a space redu...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1604.05449 شماره
صفحات -
تاریخ انتشار 2016